Кардиолог

Гиперлипопротеинемии и другие нарушения липидного обмена

Гиперлипопротеинемии и другие нарушения липидного обмена. Часть 2

Гиперлипопротеинемии и другие нарушения липидного обмена. Часть 3

Майкл Е. Браун, Джозеф Л. Гольдштейн (Michael S. Brown, Joseph L. Goldstein)

Гиперлипопротеинемии представляют собой нарушения транспорта липидов, обусловленные ускоренным синтезом или замедленным разрушением липопротеинов, переносящих холестерин и триглицериды в плазме. Повышение уровня липопротеинов в плазме имеет важное клинические значение потому, что они могут обусловливать развитие двух тяжелых, угрожающих жизни заболеваний - атеросклероза и панкреатита. Уменьшение количества содержащегося в липопротеинах холестерина, осуществляемое с помощью диеты и лекарственных средств, уменьшает при гиперлипопротеинемии риск инфаркта миокарда. Одни гиперлипопротеинемии обусловливаются непосредственно первичным нарушением процессов синтеза и разрушения липопротеиновых частиц. Другие развиваются вторично, т. е. повышение уровня липопротеинов в плазме служит одним из проявлений аномалий, связанных с нарушением регуляторных метаболических систем, например с недостаточностью тиреоидных гормонов или инсулина. Первичные гиперлипопротеинемии можно разделить на две большие группы: 1) нарушения одиночного гена, которые передаются простым доминантным или рецессивным механизмом; 2) многофакторные нарушения со сложным характером наследования, при которых гиперлипопротеинемии разной тяжести у членов одной семьи обусловливаются взаимодействием слабых эффектов многочисленных вариантных генов с эффектами факторов внешней среды.

Роль липопротеинов в транспорте липидов

Липопротеины - это глобулярные частицы с высокой молекулярной массой, переносящие неполярные липиды (главным образом триглицериды и эфиры холестерина) в плазме. Каждая частица содержит неполярную сердцевину, в которой в форме капли масла упаковано большое количество молекул гидрофобных липидов. Это гидрофобное ядро, на долю которого приходится большая часть массы всей частицы, состоит из триглицеридов и эфиров холестерина в разных соотношениях. Сердцевина окружена полярной поверхностной оболочкой из фосфолипидов, которая стабилизирует липопротеиновую частицу, обеспечивая ее растворимость в плазме. Кроме фосфолипидов, полярная оболочка содержит небольшие количества неэстерифицированного холестерина. Каждая липопротеиновая частица содержит также специфические белки (называемые апопротеинами), которые располагаются на ее поверхности. Апопротеины связываются со специфическими ферментами или транспортными белками на мембране клеток, направляя тем самым липопротеин к местам его метаболизма.

Транспорт липидов: экзогенный путь.

Наибольшее количество липопротеинов участвует в переносе поступающего с пищей жира, в состав которого входит более 100 г триглицеридов и около 1 г холестерина в сутки. В эпителиальных клетках кишечника пищевые триглицериды и холестерин включаются в крупные липопротеиновые частицы, называемые хиломикронами. Последние секретируются в лимфу кишечника и через общий кровоток поступают в капилляры жировой ткани и скелетных мышц, где взаимодействуют со связывающими местами капиллярных стенок. Будучи связанными с этими участками поверхности эндотелия, хиломикроны тем не менее оказываются объектом воздействия фермента липопротеинлипазы. Хиломикроны содержат особый апопротеин С II, активирующий липазу, высвобождающую свободные жирные кислоты и моноглицериды. Жирные кислоты проходят через эндотелиальную клетку и проникают в прилежащие адипоциты или мышечные клетки, в которых либо реэстерифицируются в триглицериды, либо окисляются.

После удаления из сердцевины триглицеридов остаток хиломикрона отделяется от эпителия капилляров и вновь поступает в кровь. Теперь он превратился в частицу, содержащую сравнительно малое количество триглицеридов и большое количество эфиров холестерина. Происходит также обмен апопротеинами между ним и другими липопротеинами плазмы. Окончательный результат заключается в превращении хиломикрона в частицу его остатка, богатую эфирами холестерина, а также апопротеинами В-48 и Е. Эти остатки переносятся в печень, которая очень интенсивно поглощает их.

Этот захват опосредуется связыванием апопротеина Е со специфическим рецептором, называемым рецептором остатка хиломикрона, на поверхности гепатоцита. Связанные остатки поглощаются клеткой и распадаются в лизосомах в процессе, называемом рецепторно-опосредованным эндоцитозом. Общий результат процесса транспорта, осуществляемого хиломикронами, заключается в доставке пищевых триглицеридов в жировую ткань, а холестерина в печень.

Часть поступающего в печень холестерина превращается в желчные кислоты, высвобождающиеся в кишечник, в котором действуют как детергенты и облегчают всасывание пищевого жира. Кроме того, часть холестерина поступает в желчь, не превращаясь в желчные кислоты. Печень поставляет холестерин и в другие ткани так называемым эндогенным путем, который обсуждается далее.

Транспорт липидов: эндогенный путь.

Синтез триглицеридов в печени усиливается при потреблении продуктов с большим количеством углеводов. В печени углеводы превращаются в жирные кислоты, эстерифицируются глицерином с образованием триглицеридов, секретируемых в кровоток в составе ядра липопротеинов очень низкой плотности (ЛПОНП). Частицы ЛПОНП относительно велики, содержат в 5-10 раз больше триглицеридов, чем эфиров холестерина, и имеют в своем составе одну из форм апопротеина В, называемую В-100, которая отличается от апопротеина В-48, характерного для хиломикронов.

Частицы ЛПОНП попадают в тканевые капилляры, в которых взаимодействуют с тем же ферментом - липопротеинлипазой, который разрушает хиломикроны. Триглицеридное ядро ЛПОНП гидролизуется, и жирные кислоты используются для синтеза триглицеридов в жировой ткани. Остатки частиц, образующиеся в результате действия липопротеинлипазы на ЛПОНП, называются липопротеинами промежуточной плотности (ЛППП). Часть частиц ЛППП распадается в печени путем связывания с рецепторами, получившими название рецепторов липопротеинов низкой плотности (рецепторы ЛПНП), которые отличаются от рецепторов остатков хиломикронов. Остальная часть ЛППП остается в плазме, в которой подвергается дальнейшей трансформации, в процессе которой удаляются почти все оставшиеся триглицериды. При этом превращении частица теряет все свои апопротеины, за исключением апопротеина В-100. В результате из частицы ЛППП образуется богатая холестерином частица ЛПНП. Ядро ЛПНП почти целиком состоит из эфиров холестерина, а поверхностная оболочка содержит только один апопротеин - В-100. У человека довольно большая часть ЛПНП не поглощается печенью, и поэтому их уровень в крови человека относительно высок. Действительно, в норме примерно 3/4 общего холестерина плазмы человека находится в составе частиц ЛПНП.

Одна из функций ЛПНП заключается в снабжении холестерином разнообразных внепеченочных паренхиматозных клеток, например клеток коры надпочечников, лимфоцитов, мышечных клеток и клеток почек. Все они несут на своей поверхности рецепторы ЛПНП. Связавшиеся с этими рецепторами ЛПНП поглощаются посредством рецептороопосредованного эндоцитоза и внутри клеток разрушаются лизосомами. Эфиры холестерина из ЛПНП гидролизуются лизосомной холестерилэстеразой (кислая липаза), и свободный холестерин используется для синтеза мембран и в качестве предшественника стероидных гормонов. Как и внепеченочные ткани, печень обладает множеством рецептором ЛПНП; в ней холестерин ЛПНП используется для синтеза желчных кислот и для образования свободного холестерина, секретируемого в желчь. У человека ежесуточно рецепторо-опосредованным путем удаляется из плазмы 70-80 % ЛПНП. Остальная часть разрушается клеточной системой «чистильщиков» - фагоцитирующими клетками ретикулоэндотелиальной системы. В отличие от рецептороопосредованного пути разрушения ЛПНП путь их разрушения в клетках-«чистилыциках», как полагают, служит исключительно для разрушения ЛПНП при повышении их уровня в плазме, а не для снабжения клеток холестерином.

Поскольку мембраны паренхиматозных клеток и клеток-«чистильщиков» подвергаются кругообороту и так как клетки погибают и обновляются, неэстерифицированный холестерин поступает в плазму, в которой обычно связывается липопротеинами высокой плотности (ЛПВП). Этот неэстерифицированный холестерин затем образует эфиры с жирными кислотами под действием присутствующего в плазме фермента - лецитинхолестеринацилтрансферазы (ЛХАТ). Образующиеся на поверхности ЛПВП эфиры холестерина переносятся на ЛПОНП и, в конце концов, включаются в ЛПНП. Таким образом формируется цикл, в котором ЛПНП доставляют холестерин внепеченочным клеткам и вновь получают его из них через ЛПВП. Большая часть холестерина, высвобождаемая внепеченочными тканями, переносится в печень, где экскретируется в желчь.

Диагностика гиперлипопротеинемии.

Уровень в плазме одного класса липопротеинов или нескольких повышается при многих болезнях. Как правило, они выявляются по увеличению концентрации триглицеридов или холестерина в плазме натощак, т. е. по состоянию, называемому гиперлипидемией. Уровень холестерина плазмы отражает содержание общего холестерина, который включает как эфиры холестерина, так и неэстерифицированный холестерин. По содержанию холестерина и триглицеридов в плазме можно судить о природе липопротеиновых частиц, уровень которых повышен в этом случае. Изолированное повышение уровня триглицеридов в плазме указывает на увеличение концентрации хиломикронов или ЛПОНП. С другой стороны, изолированное повышение уровня холестерина почти всегда свидетельствует об увеличении концентрации ЛПНП. Часто одновременно повышаются уровни и триглицеридов, и холестерина. Это может отражать резкое увеличение концентрации хиломикронов и ЛПОНП, но в таком случае отношение триглицеридов к холестерину в плазме должно превышать 5:1. Альтернативой служит одновременное увеличение содержания ЛПОНП и ЛПНП, но при этом отношение триглицериды/холестерин в плазме обычно бывает менее 5:1.

Определение гиперлипопротеинемии достаточно произвольно, поскольку уровни липидов и липопротеинов в плазме у разных лиц распределяются по колоколообразной кривой без четкого разграничения между нормой и патологией. Поскольку на концентрацию липопротеинов влияет диета и другие факторы окружающей среды, необходимо устанавливать стандарты для отдельных групп населения. Обычно статистические границы колебаний в норме выбирают произвольно, исходя из результатов обследования большого числа практически здоровых лиц разного возраста. Границу чаще всего проводят в пределах верхних концентраций, которые регистрируются у 5-10 % здоровых (т. е. на уровне 90-95-й перцентили). Однако результаты анализа крови на липиды у жителей промышленных и преимущественно сельскохозяйственных регионов свидетельствуют о том, что «нормальные» в статистическом смысле концентрации липидов и липопротеинов не обязательно означают отсутствие патологии. В качестве рабочего правила значительной считают гиперлипопротеинемию у любого человека в возрасте до 20 лет, у которого уровень общего холестерина или триглицеридов в плазме превышает 1900 мг/л и 1400 мг/л соответственно. У лиц в возрасте старше 20 лет это состояние диагностируют при уровне в плазме общего холестерина и триглицеридов выше 2200 мг/л и 2000 мг/л соответственно.

Разнообразные сочетания липопротеинов, уровень которых повышен при патологии, подразделяют на шесть типов или категорий. Большинство из них может быть обусловлено разными генетическими болезнями. И наоборот, при некоторых генетических болезнях может диагностироваться гиперлипопротеинемия не одного, а нескольких типов. Кроме того, любой тип гиперлипопротеинемии может быть вторичным по отношению к другому метаболическому нарушению. Следовательно, типы липопротеинемий следует рассматривать как свидетельство нарушения обмена липопротеинов, а не как название конкретной болезни.

Характер повышения липопротеинов в плазме (типы липопротеинемий)

Тип липопротеинемий

В плазме повышен уровень в основном

липопротеинов

липидов

1

Хиломикроны

Триглицериды

ЛПНП

Холестерин

26

ЛПНП и ЛПОНП

Холестерин и триглицериды

3

Остатки

Триглицериды и холестерин

4

ЛПОНП

Триглицериды

5

ЛПОНП и хиломикроны

Триглицериды и холестерин

Для распознавания имеющегося типа липопротеинемий обычно достаточно простого определения уровня липидов в плазме в сочетании с данными клинического обследования. Иногда в случаях подозрения на повышение уровня остатков липопротеинов (липопротеинемия 3-го типа, при которой электрофоретически обнаруживается «широкая бета»-полоса) или на хиломикронемию (липопротеинемия 1-го типа) применяют бумажный электрофорез плазмы. В редких случаях определяют содержание ЛПВП, так как высокий уровень липопротеинов этого класса статистически связан с уменьшением риска инфаркта миокарда. Концентрацию ЛПВП можно определять в клинических лабораториях с помощью стандартизированных методик разделения липопротеинов, но значение результатов таких определений для прогнозирования возникновения инфаркта миокарда у отдельного больного остается проблематичным.

Первичные гиперлипопротеинемии, обусловленные мутацией одиночного гена

Семейная недостаточность липопротеинлипазы.

Это редкое аутосомное рецессивное заболевание считают результатом отсутствия или резкого снижения активности липопротеинлипазы. В результате этого нарушения блокируется метаболизм хиломикронов, что приводит к их чрезвычайному накоплению в плазме.

Клинические проявления.

Патология проявляется обычно в младенчестве или детстве рецидивами приступов болей в животе. Они обусловливаются панкреатитом, связанным с резким повышением уровня хиломикронов в плазме.

У больных периодически появляются эруптивные ксантомы: небольшие желтые папулы, часто окруженные эритематозным кольцом, преимущественно на коже ягодичной области и других испытывающих давление участках тела. Ксантомы образуются в результате отложения больших количеств хиломикроновых триглицеридов в гистиоцитах кожи. Триглицериды откладываются также в фагоцитах ретикулоэндотелиальной системы, вызывая гепатомегалию, спленомегалию и инфильтрацию костного мозга пенистыми клетками. При резком повышении уровня хиломикронов в крови (т. е. при уровне триглицеридов в плазме выше 20 г/л) она приобретает молочно-желтый цвет, и ее называют липемичной. При обследовании офтальмоскопом видны белесая сетчатка и белые сосуды в ней, позволяющие диагностировать липемию сетчатки. Несмотря на резкое повышение содержания триглицеридов в плазме, развитие атеросклероза не ускоряется.

Патогенез.

Больные представляют собой гомозиготы по мутации, препятствующей нормальной экспрессии активности липопротеинлипазы. Первичный генетический дефект затрагивает, по-видимому, саму структуру фермента: количество активатора липопротеинлипазы - апопротеин C-II - не изменено. Родители больного - облигатные гетерозиготы по дефекту липопротеинлипазы, но с клинической точки зрения они здоровы. В результате недостаточности липопротеинлипазы у гомозигот хиломикроны не могут нормально метаболизироваться, поэтому после приема жирной пищи их уровень заметно повышается. Если у здорового человека хиломикроны исчезают из крови через 12 ч после еды, то у больного их высокий уровень сохраняется и через несколько суток на фоне голодания или потребления обезжиренной пищи.

Содержащиеся в крови хиломикроны, проходя через капилляры поджелудочной железы, вызывают ее воспаление. В просвете капилляров на них действуют небольшие количества липазы, просачивающейся из ткани железы. В результате частичного гидролиза триглицеридов и фосфолипидов хиломикронов образуются токсичные продукты, в том числе жирные кислоты и лизолецитин, разрушающие тканевые мембраны, в связи с чем усиливается высвобождение липазы из ацинарных клеток, что приводит в конце концов к острому приступу панкреатита.

Диагностика.

Диагноз семейной недостаточности липопротеинлипазы следует предполагать при обнаружении липемической плазмы у лиц молодого возраста, голодавших не менее 12ч. Собранная в присутствии ЭДТА плазма после ночного стояния в холодильнике при 4 °С в этом случае приобретает характерный вид: сверху появляется белый сметанообразный слой (состоящий из хиломикронов), под которым находится прозрачная плазма. Диагноз семейной недостаточности липопротеинлипазы подтверждается при электрофорезе, позволяющем обнаружить липопротеинемию I типа. Диагноз подтверждают отсутствием повышения активности липопротеинлипазы в плазме после введения гепарина. У здорового человека внутривенное введение гепарина сопровождается высвобождением липопротеинлипазы из мест ее связывания в эндотелии капилляров, поэтому в плазме повышается уровень фермента. С помощью гельэлектрофореза апопротеинов ЛПОНП у больных с недостаточностью липопротеинлипазы обнаруживают нормальное количество ее активатора - апопротеина C-II, что позволяет дифференцировать их от больных с близким нарушением - семейной недостаточностью апопротеина C-II.

Лечение.

Симптоматика становится менее выраженной, если больного переводят на обезжиренную диету. Нужно сделать все возможное для поддержания уровня триглицеридов в плазме натощак ниже 10 г/л, чтобы предотвратить развитие панкреатита. Эмпирически установлено, что для предупреждения симптоматической гиперлипемии больной взрослый человек должен постоянно потреблять жир в количестве менее 20 г/сут. Поскольку триглицериды со средней длиной цепи не включаются в хиломикроны, именно эти жиры и следует использовать в диете для обеспечения ее нормальной калорийности. Больной обязательно должен получать и жирорастворимые витамины.

Семейная недостаточность апопротеина C-II.

Это редкое аутосомное рецессивное заболевание обусловлено отсутствием апопротеина C-II, необходимого кофактора липопротеинлипазы. Дефицит этого пептида приводит к функциональной недостаточности фермента и тем самым к возникновению синдрома, сходного с семейной недостаточностью липопротеинлипазы, хотя и не идентичного ей. Из-за дефицита апопротеина C-II липопротеинлипаза не активируется и в крови накапливаются два ее липопротеиновых субстрата: хиломикроны и ЛПОНП, что приводит к гипертриг-лицеридемии (липопротеинемия, тип 1 или 5). Это заболевание диагностируют у детей или взрослых при рецидивах приступов панкреатита или случайно обнаруживаемой «молочной» плазме. Диагноз подтверждают отсутствием апопротеина C-II при гельэлектрофорезе апопротеинов ЛПОНП. Переливание больным плазмы здорового человека, содержащей избыток апопротеина C-II, приводит к резкому снижению уровня триглицеридов. У гетерозигот, у которых уровень апопротеина C-II снижен на 50 %, концентрация триглицеридов в плазме может быть несколько увеличена, но панкреатит не развивается. Лечение заключается в соблюдении в течение всей жизни больного диеты с ограниченным содержанием жира. При тяжелой форме панкреатита показано переливание одной - двух порций нормальной плазмы. Гомозигот по недостаточности апопротеина C-II обычно выявляют в более позднем возрасте, в их плазме содержатся большие количества ЛПОНП, а кожные эруптивные ксантомы у них появляются реже, чем у больных с семейной недостаточностью липопротеинлипазы. Причины этих клинических различий не установлены.

Семейная гиперлипопротеинемия, тип 3.

При этом врожденном заболевании в плазме повышены уровни как холестерина, так и триглицеридов. Это обусловлено накоплением в плазме остатков, образующихся в результате частичного разрушения ЛПОНП. Семейная гиперлипопротеинемия типа 3, называемая также семейной дисбеталипопротеинемией, передается как дефект одиночного гена, но для ее проявления требуются, по-видимому, участие факторов внешней среды и/или других генетических факторов (обсуждаемых далее).

Клинические проявления.

Для больных лиц характерно отсутствие гиперлипидемии или каких-либо клинических симптомов до возраста 20 лет. Своеобразие клинической картине придают два вида кожных ксантом: полосатого ладонного ксантоматоза, проявляющегося оранжевой или желтой окраской сгибов на ладонных поверхностях и пальцах, и бугорчатые, или тубероэруптивные, ксантомы, которые представляют собой выпуклые кожные образования размером от горошины до лимона. Бугорчатые ксантомы локализуются обычно над локтевыми и коленными суставами. Встречаются также ксантелазмы век, но они неспецифичны для этого заболевания.

Для семейной гиперлипопротеинемии типа 3 характерно быстрое развитие выраженного атеросклероза коронарных и внутренних сонных артерий, брюшного отдела аорты и ее ветвей. Результатом служат ранние инфаркты миокарда, инсульты, перемежающаяся хромота и гангрена ног. У больных с клиническими проявлениями заболевания последние часто усиливаются при гипотиреозе, ожирении или сахарном диабете.

Патогенез.

Гиперлипидемия обусловливается накоплением крупных липопротеиновых частиц, содержащих как триглицериды, так и эфиры холестерина. Эти частицы представляют собой остатки хиломикронов, образующиеся при их катаболизме, и ЛППП, образующиеся при разрушении ЛПОНП под действием липопротеинлипазы. У здорового человека частицы остатков хиломикронов быстро поглощаются печенью и поэтому очень редко обнаруживаются в плазме. Часть ЛППП также захватывается печенью, а остальное их количество превращается в ЛПНП. У больных с гиперлипопротеинемией типа 3 поглощение ЛППП и остатков хиломикронов печенью заблокировано, эти липопротеины в большом количестве накапливаются в плазме и тканях, вызывая ксантоматоз и атеросклероз.

Мутация, определяющая заболевание, поражает ген, кодирующий структуру апопротеина Е - белка, который в норме содержится в ЛППП и остатках хиломикронов. Он с очень большим сродством связывает как рецептор остатков хиломикронов, так и рецептор ЛППП. Таким образом, апопротеин Е опосредует быстрое поглощение печенью обеих этих частиц. Ген апопротеина Е в популяции полиморфен. Имеется три общих аллеля (Е2, Е3 и Е4), частота которых в популяции составляет примерно 0,12; 0,75 и 0,13. Каждый аллель определяет синтез особой формы апопротеина Е, которую можно обнаружить с помощью изоэлектрического фокусирования. Три аллеля создают шесть генотипов: E2/E2, Е33, Е44, Е23, Е24 и Е34. Гиперлипопротеинемия типа 3 встречается только у лиц, гомозиготных по аллелю Е2 (генотип Е22). У белка, кодируемого аллелем Е2, нарушена способность связываться с печеночными рецепторами, опосредующими захват остатков хиломикронов и ЛППП. В результате эти частицы накапливаются в плазме.

Частота генотипа Е2/Е2 среди населения составляет примерно 1:100. Однако гиперлипопротеинемия типа 3 встречается с частотой только 1:10 000. Таким образом, лишь у 1 % лиц с генотипом E2/E2 выявляют симптомы заболевания. По-видимому, большинство гомозигот по аллелю Е2 обладает определенной способностью компенсировать дефект апопротеина Е, так как другие апопротеины, например В 48 и В 100, также опосредуют связывание с печеночными рецепторами, хотя и менее эффективно, чем апопротеин Е. Семейная гиперлипопротеинемия типа 3 встречается лишь у тех лиц, которые не только гомозиготны по аллелю Е2, но и не способны компенсировать нарушенную функцию Е-белка. Неспособность к компенсации может определяться независимым наследованием другого дефекта метаболизма липопротеинов, такого как семейная гиперхолестеринемия или гиперлипопротеинемия множественного типа. Если человек гетерозиготен по одному из этих доминантных заболеваний и в то же время гомозиготен по аллелю Е2, то у него проявится синдром гиперлипопротеинемии типа 3. Экспрессию гиперлипопротеинемии у человека с генотипом Е2^2 вызовет также гипотиреоз, сахарный диабет или ожирение. Следует подчеркнуть, что у гетерозигот по аллелю Е2 никогда не развивается клинический синдром семейной гиперлипопротеинемии типа 3.

Диагностика.

Диагноз предполагают при обнаружении ладонных или бугорчатых ксантом у больных с повышенными уровнями в плазме как холестерина, так и триглицеридов. Ксантомы появляются примерно у 80 % больных с симптомами заболевания. О нем следует думать и в случае умеренного повышения в плазме уровней холестерина и триглицеридов, причем тогда, когда их абсолютные количества почти одинаковы (например, уровни и холестерина и триглицеридов составляют примерно 3000 мг/л). Это, однако, не всегда так, особенно при обострении болезни, когда содержание триглицеридов в плазме может увеличиваться в большей степени, чем холестерина.

Диагноз подтверждается результатами электрофореза липопротеинов (липопротеинемия типа 3), когда появляется так называемая широкая бета-полоса. Она обусловливается присутствием остатков хиломикронов и ЛППП. Окончательно диагноз устанавливают в специализированных лабораториях с помощью двух методов. Во-первых, можно провести ультрацентрифугирование плазмы с исследованием химического состава фракции ЛПОНП. У больных в ней содержатся ЛППП и остатки хиломикронов при относительно высоком отношении холестерина к триглицеридам. Во-вторых, в правильности диагноза можно убедиться, обнаружив гомозиготность по аллелю Е2 при изоэлектрической фокусировке белков, экстрагированных из частиц остатков.

Лечение.

Необходимо тщательно обследовать больного на предмет выявления скрытого гипотиреоза, включая определение уровня тиреотропного гормона (ТТГ) в плазме. При обнаружении гипотиреоза назначают левотироксин. Это лечение сопровождается резким снижением уровня липидов у больного с гипотиреозом. Кроме того, следует всячески пытаться уменьшить ожирение и компенсировать сахарный диабет диетой и инсулином. При безуспешности этих мероприятий больному с гиперлипопротеинемией типа 3 назначают клофибрат, который вызывает резкое и стойкое снижение уровней липидов в плазме.

T.P. Harrison. Principles of internal medicine. Перевод д.м.н. А. В. Сучкова, к.м.н. Н. Н. Заваденко, к.м.н. Д. Г. Катковского