Лизосомные болезни накопления
Лизосомные болезни накопления. Часть 2
Артур Л. Боде (Arthur L. Beaudet)
Определение.
Лизосомы представляют собой цитоплазматические органеллы, в кислой среде которых содержатся многочисленные ферменты, гидролизующие большинство биологических макромолекул. Первичные лизосомы представляют собой особые тельца, образующиеся из пластичного комплекса (аппарат Гольджи). Они могут сливаться с другими окруженными мембраной пузырьками, формируя вторичные лизосомы. Последние содержат материал, попавший в клетку извне в результате эндоцитоза, или внутриклеточный материал, поглощаемый в процессе аутофагии. Основная функция лизосом заключается в разрушении использованных макромолекул по ходу их нормального кругооборота и тканевой перестройки. Исследования метаболизма витамина В 12, липопротеинов, пептидных гормонов и факторов роста свидетельствуют о роли лизосом в поглощении этих молекул путем адсорбтивного эндоцитоза. Начальная клеточная вакуоль, образующаяся при адсорбтивном эндоцитозе (рецептосома, или эндосома) сливается с лизосомами. Лизосомные ферменты представляют собой гликопротеины, синтезирующиеся в эндоплазматической сети. Исходные продукты белкового синтеза подвергаются существенным изменениям, в том числе протеолитическому отщеплению, присоединению комплекса олигосахаридов, синтезу маркеров распознавания (в некоторых случаях маннозо-6-фосфата) и компартментализации в первичные лизосомы. Эти процессы протекают в эндоплазматической сети, пластинчатом комплексе и, вероятно, в первичных, если не вторичных, лизосомах.
Концепция лизосомных болезней накопления сложилась в результате изучения гликогеноза II типа (Помпе). Факт накопления гликогена в лизосомах вследствие недостаточности а-глюкозидазы, а также данные, полученные при исследовании других аномалий, позволили Эру определить врожденную лизосомную болезнь как такое состояние, при котором: 1) определяется недостаточность какого-либо одного лизосомного фермента и 2) внутри связанных с лизосомами вакуолей появляются необычные отложения (субстраст). Это определение можно видоизменить, включив в него дефекты одиночных генов, влияющие на один лизосомный фермент или более, и тем самым распространить на такие болезни, как муколипидозы и множественная сульфатазная недостаточность. Определение можно расширить и далее с тем, чтобы оно распространялось на недостаточность и других белков, необходимых для функционирования лизосом (активирующие ферменты разрушения сфинголипидов). Данные биохимических и генетических исследований свидетельствуют о том, что эти активирующие белки принимают участие в гидролизе некоторых субстратов.
Лизосомные болезни накопления объединяют большинство болезней накопления липидов, мукополисахаридозы, муколипидозы, болезни накопления гликопротеинов и другие. Недостаточность ферментов имеет аутосомно-рецессивную основу, за исключением мукополисахаридоза II (МПС II) Хантера, который наследуется как сцепленный с Х-хромосомой рецессивный признак, и болезни Фабри, которая сцеплена с Х-хромосомой и часто проявляется у женщин. Органами-мишенями оказываются обычные места разрушения той или иной макромолекулы. Например, у лиц с нарушением процесса разрушения миелина в процесс вовлекается белое вещество головного мозга, при нарушении процесса разрушения гликолипидов стромы эритроцитов развивается гепатоспленомегалия, а при нарушении процесса разрушения вездесущих мукополисахаридов - генерализованное повреждение тканей. Накапливающийся материал часто вызывает висцеромегалию или макроцефалию, но может развиться и вторичная атрофия, особенно мозга и мышц. Вообще симптоматика соответствующих болезней обусловливается повреждающим действием накапливающихся веществ, но часто неясно, каким именно образом они вызывают гибель или дисфункцию клеток. Все эти болезни прогрессируют, и многие из них заканчиваются смертью в детском или юношеском возрасте. Для окончательного диагноза наиболее важны результаты определения конкретных ферментов в сыворотке, лейкоцитах или культивируемых фибробластах кожи; соответствующие тесты выбирают, исходя из клиники заболевания. Эти болезни имеют широкие фенотипические колебания, причем многие из них связаны с возрастом, т. е. различают инфантильные, ювенильные и взрослые их формы. Кроме того, при болезнях, обусловленных дефектом одиночного гена, возможны различные сочетания висцеральных, костных и неврологических аномалий.
Диагностика.
Подозрение на лизосомную болезнь появляется обычно при прогрессирующей дисфункции нервной системы, висцеромегалии, нарушениях скелета или каких-то более специфических аномалиях. Отличительной особенностью этих болезней служат прогрессирующие или дегенеративные процессы. Дегенеративные процессы у нормально развивающегося ребенка приводят к замедлению развития, а затем уже к утрате им ранее приобретенных навыков. При сборе анамнеза необходимо обращать особое внимание на развитие в детстве, неврологические симптомы, включая судороги, а также нарушения зрения и слуха, физический рост и более специфические показатели, такие как огрубение черт лица, помутнение роговицы, усиление ранних рефлюксов, растяжение живота, боли в суставах, их тугоподвижность, грыжи и рецидивирующие инфекции. При сборе семейного анамнеза в случае аутосомных рецессивных заболеваний можно выявить аналогичные симптомы у сиблингов или других кровных родственников, а в случае Х-сцепленных аномалий обнаружить других больных членов семьи мужского пола. Целесообразно учитывать этническую принадлежность больного, так как ряд болезней накопления липидов чаще регистрируется у евреев ашкенази, а маннозидозы и аспартилглюкозаминурия - у жителей Скандинавии. Ювенильная форма сиалидоза распространена в Японии.
При осмотре можно обнаружить увеличение окружности черепа. В начале развития некоторых мукополисахаридозов и гликогенозов отмечается гигантизм, тогда как более поздним проявлением многих заболеваний служит низкорослость. При офтальмологическом обследовании с помощью щелевой лампы тщательно осматривают глазное дно. Могут увеличиваться размеры языка, черты лица становятся грубыми, присоединяется гепатоспленомегалия. Аномалии скелета могут заключаться в кифозе, ширококостности и тугоподвижности суставов. Изменения кожи встречаются редко, обычно только при фукозидозе, сиалидозе, болезнях Фабри и болезни Гунтера. При тщательном неврологическом обследовании необходимо попытаться определить степень повреждения серого и белого вещества мозга, а также периферических нервов. Предварительные диагностические исследования должны включать изучение мазков периферической крови для выявления вакуолизированных или гранулированных лейкоцитов, пробу на мукополисахариды в пятне мочи и обзорную рентгенографию скелета. Предпочтительный алгоритм диагностики заключается в использовании всех этих методов для выбора фермента, активность которого требует проверки при исследовании сыворотки, лейкоцитов или культуры фибробластов кожи. При положительном скрининг-тесте на мукополисахариды или при убедительных клинических данных можно провести количественный анализ на мукополисахариды. При неопределенности результатов обследования целесообразно произвести биопсию кожи, костного мозга, слизистой оболочки прямой кишки, печени, периферического нерва, конъюнктивы или других тканей для проведения световой и электронной микроскопии. Результаты электронно-микроскопического исследования в зависимости от наличия или отсутствия переполненных лизосом могут подтвердить или отвергнуть общее предположение о лизосомной болезни. И в этих случаях определение ферментов - наиболее подходящий способ диагностики. Если получены веские данные в пользу лизосомной болезни накопления, но не выявлена недостаточность какого-либо фермента, целесообразно начать дальнейшие исследования с химического анализа биоптатов печени или мозга.
Гетерогенность.
Лизосомные болезни накопления значительно различаются по клиническим и биохимическим признакам. Коротко говоря, структурный ген лизосомного фермента производит продукты, которые после посттрансляционной модификации превращаются в гликопротеины, но при этом часто образуется несколько вариантов последних с разными электрофоретическими свойствами - изоферменты. Эти изоферменты способны гидролизовать один или несколько субстратов, причем субстратная специфичность разных изоферментов может различаться. Различия в субстратной специфичности обусловлены также присутствием сходных, но генетически разных ферментов, например р-галактозидаз. Мутация гена может полностью лишить фермент активности или только снизить ее, изменить способность фермента к посттрансляционной модификации или его активность по отношению к конкретным субстратам.
В большинстве случаев различия в тяжести заболевания у разных больных, равно как и разные сочетания висцеральных, скелетных, неврологических, глазных и других проявлений одной и той же болезни, определяются разными мутациями структурных генов лизосомных ферментов. Гетерогенность еще больше увеличивается из-за рецессивной природы большинства этих болезней, так как у каждого больного должно быть два мутантных гена в одном локусе. Точный характер мутаций в двух копиях одного гена может быть неодинаковым, что делает больного генетически компаунд-гетерозиготой. В этом случае один или оба гена могут кодировать фермент с некоторой остаточной активностью по отношению к одному или нескольким субстратам. Вероятными примерами компаунд-гетерозигот могут служить больные с промежуточными клиническими фенотипами мукополисахаридоза I типа (МПС I). На молекулярном уровне большинство больных с лизосомными болезнями накопления можно, вероятно, отнести к компаунд-гетерозиготам. Несмотря на то что с клинической точки зрения целесообразно различать инфантильный, ювенильный, взрослый, нейропатический или ненейропатический фенотипы болезни, существование разных мутантных аллелей и генетических комбинаций объясняет случаи аберрантности или промежуточности состояний по сравнению с их обычным фенотипом. Другой тип гетерогенности подтверждают МПС III А, В, С и D, представляющие собой весьма сходные болезни, но обусловленные дефектами разных генов. Таким образом, в основе внешней клинической гомогенности может лежать биохимическая гетерогенность.
Еще большую сложность проблеме придает тот факт, что активность некоторых ферментов определяется сочетанием неодинаковых субъединиц молекулы. В результате недостаточность одного и того же фермента может быть обусловлена разными мутациями (например, недостаточность гексаминидазы А при болезнях Тея- Сакса и Сендхоффа), которые объясняют также множественную недостаточность ферментов при дефекте одиночного гена, например при болезни Сендхоффа. Лизосомные болезни накопления могут быть результатом генетических аномалий и на уровне посттрансляционной модификации лизосомных ферментов, равно как и общих дефектов целостности и функции лизосом. Муколипоидозы II и III отражают ситуацию, при которой дефект одиночного гена меняет способность ряда лизосомных ферментов проникать в лизосомы. Таким образом, гетерогенность может обусловливаться и мутациями, не затрагивающими структурные гены самих ферментов. Лучшему пониманию природы фенотипической и генотипической гетерогенности должна способствовать дальнейшая расшифровка биохимической идентичности, структуры субъединиц, посттрансляционного процессинга и субстратной специфичности лизосомных ферментов.
Установлению клинического диагноза способствует, но в то же время в чем-то и осложняет широкое использование синтетических субстратов при определении активности лизосомных ферментов. С помощью таких субстратов зачастую регистрируется активность группы близких, но разных ферментов. Так, при использовании искусственного субстрата активность р-галактозидазы на самом деле может отражать сумму действия разных р-галактозидаз, кодируемых разными структурными генами и имеющих разную субстратную специфичность. Для того чтобы придать клиническую значимость результатам этих определений, приходится варьировать условия in vitro для того, чтобы вычленить действие именно того фермента, недостаточность которого характерна для данного заболевания. Однако генетическая гетерогенность проявляется в том, что мутантный фермент либо гидролизует природный, но не искусственный субстрат, либо наоборот. Например, если использовать искусственный субстрат, то у здорового человека можно обнаружить недостаточность гексозаминидазы А, а у больного с синдромом Тея- Сакса - весьма высокую ее активность. Патология коррелирует со способностью фермента гидролизовать только природный субстрат - ганглиозид GM2. Все это очень важно для скрининга гетерозигот и для пренатальной диагностики. Эти феномены требуют не ограничиваться определением активности ферментов в отношении искусственных субстратов, если результаты определений противоречат отчетливым клиническим, электронно-микроскопическим или химическим признакам болезни.
Лечение и профилактика.
В настоящее время отсутствуют эффективные специфические средства лечения, поэтому оно остается в основном симптоматическим. Во многих случаях болезнь неумолимо прогрессирует, и облегчить состояние больного невозможно. При болезни Фабри, часто сопровождающейся почечной недостаточностью, помогает пересадка почки, а у взрослых при болезни Гоше - спленэктомия. Большое внимание привлекла возможность заместительной терапии ферментами путем трансплантации органов или фибробластов, инфузии плазмы, лейкоцитов и ферментов в чистом виде или заключенных в эритроциты или липосомы. Несмотря на то что эти мероприятия могли бы смягчить симптоматику, не связанную с повреждением центральной нервной системы, их эффективность остается недоказанной. Наибольшие проблемы при лечении связаны именно с повреждением центральной нервной системы, поскольку гематоэнцефалический барьер служит дополнительным препятствием для проявления эффекта при заместительной ферментной терапии.
Важно при этих болезнях генетическое консультирование. Все лизосомные болезни накопления, при которых известна недостаточность конкретного фермента, могут или могли бы быть диагностированы in utero, поскольку активность лизосомных ферментов экспрессируется в культивируемых клетках амниотической жидкости, равно как и в культуре фибробластов кожи. Для пренатального диагноза можно также прибегать к помощи биопсии ворсинок плаценты. Несмотря на то что при этом несколько повышается частота выкидышей, члены семей с высоким генетическим риском очень заинтересованы в возможности ранней диагностики. Иногда удается выявить гетерозигот среди близких родственников, но обычно трудно получить согласие достаточного для статистического анализа числа лиц. Выявление гетерозигот осложняет также случайная инактивация Х-хромосом у 46 ХХ-носителей болезней, сцепленных с Х-хромосомой, но следует настойчиво проводить генетическое консультирование женщин из группы риска. Более эффективным профилактическим методом служит выявление гетерозигот перед их вступлением в брак и рождением детей. Реальность этого подхода доказана программами выявления гетерозигот по болезни Тея-Сакса. Эти программы способствовали снижению частоты соответствующих болезней, вероятно, в связи с широким тестированием и влиянием на планирование рождения детей супружескими парами из группы риска по рождению больных детей; высокая частота гетерозигот среди евреев ашкенази и доступность биохимических методов выявления носительства гена болезни Тея-Сакса облегчили проведение этой программы. Распространение этого подхода при других болезнях и в популяциях с меньшей частотой гетерозигот требует разработки надежных методов выявления последних. Даже в оптимальных условиях генетические варианты могут обусловливать ложноположительные или ложноотрицательные результаты любой программы скрининга.
Клонирование генов лизосомных ферментов. Сообщается о клонировании ДНК, кодирующих ряд лизосомных ферментов, и в конце концов большинство этих генов будет клонировано. Работа в этом направлении должна обеспечить лучшее понимание биохимии и генетики лизосомных болезней. Основная надежда возлагается на то, что доступность клонированных генов позволит осуществить генную заместительную терапию в той или иной форме.
T.P. Harrison. Principles of internal medicine. Перевод д.м.н. А. В. Сучкова, к.м.н. Н. Н. Заваденко, к.м.н. Д. Г. Катковского